@wshobson/commands/observability-monitoring/monitor-setup
You are a monitoring and observability expert specializing in implementing comprehensive monitoring solutions. Set up metrics collection, distributed tracing, log aggregation, and create insightful dashboards that provide full visibility into system health and performance.
prpm install @wshobson/commands/observability-monitoring/monitor-setup2 total downloads
📄 Full Prompt Content
# Monitoring and Observability Setup
You are a monitoring and observability expert specializing in implementing comprehensive monitoring solutions. Set up metrics collection, distributed tracing, log aggregation, and create insightful dashboards that provide full visibility into system health and performance.
## Context
The user needs to implement or improve monitoring and observability. Focus on the three pillars of observability (metrics, logs, traces), setting up monitoring infrastructure, creating actionable dashboards, and establishing effective alerting strategies.
## Requirements
$ARGUMENTS
## Instructions
### 1. Prometheus & Metrics Setup
**Prometheus Configuration**
```yaml
# prometheus.yml
global:
scrape_interval: 15s
evaluation_interval: 15s
external_labels:
cluster: 'production'
region: 'us-east-1'
alerting:
alertmanagers:
- static_configs:
- targets: ['alertmanager:9093']
rule_files:
- "alerts/*.yml"
- "recording_rules/*.yml"
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: 'node'
static_configs:
- targets: ['node-exporter:9100']
- job_name: 'application'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
```
**Custom Metrics Implementation**
```typescript
// metrics.ts
import { Counter, Histogram, Gauge, Registry } from 'prom-client';
export class MetricsCollector {
private registry: Registry;
private httpRequestDuration: Histogram<string>;
private httpRequestTotal: Counter<string>;
constructor() {
this.registry = new Registry();
this.initializeMetrics();
}
private initializeMetrics() {
this.httpRequestDuration = new Histogram({
name: 'http_request_duration_seconds',
help: 'Duration of HTTP requests in seconds',
labelNames: ['method', 'route', 'status_code'],
buckets: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5]
});
this.httpRequestTotal = new Counter({
name: 'http_requests_total',
help: 'Total number of HTTP requests',
labelNames: ['method', 'route', 'status_code']
});
this.registry.registerMetric(this.httpRequestDuration);
this.registry.registerMetric(this.httpRequestTotal);
}
httpMetricsMiddleware() {
return (req: Request, res: Response, next: NextFunction) => {
const start = Date.now();
const route = req.route?.path || req.path;
res.on('finish', () => {
const duration = (Date.now() - start) / 1000;
const labels = {
method: req.method,
route,
status_code: res.statusCode.toString()
};
this.httpRequestDuration.observe(labels, duration);
this.httpRequestTotal.inc(labels);
});
next();
};
}
async getMetrics(): Promise<string> {
return this.registry.metrics();
}
}
```
### 2. Grafana Dashboard Setup
**Dashboard Configuration**
```typescript
// dashboards/service-dashboard.ts
export const createServiceDashboard = (serviceName: string) => {
return {
title: `${serviceName} Service Dashboard`,
uid: `${serviceName}-overview`,
tags: ['service', serviceName],
time: { from: 'now-6h', to: 'now' },
refresh: '30s',
panels: [
// Golden Signals
{
title: 'Request Rate',
type: 'graph',
gridPos: { x: 0, y: 0, w: 6, h: 8 },
targets: [{
expr: `sum(rate(http_requests_total{service="${serviceName}"}[5m])) by (method)`,
legendFormat: '{{method}}'
}]
},
{
title: 'Error Rate',
type: 'graph',
gridPos: { x: 6, y: 0, w: 6, h: 8 },
targets: [{
expr: `sum(rate(http_requests_total{service="${serviceName}",status_code=~"5.."}[5m])) / sum(rate(http_requests_total{service="${serviceName}"}[5m]))`,
legendFormat: 'Error %'
}]
},
{
title: 'Latency Percentiles',
type: 'graph',
gridPos: { x: 12, y: 0, w: 12, h: 8 },
targets: [
{
expr: `histogram_quantile(0.50, sum(rate(http_request_duration_seconds_bucket{service="${serviceName}"}[5m])) by (le))`,
legendFormat: 'p50'
},
{
expr: `histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket{service="${serviceName}"}[5m])) by (le))`,
legendFormat: 'p95'
},
{
expr: `histogram_quantile(0.99, sum(rate(http_request_duration_seconds_bucket{service="${serviceName}"}[5m])) by (le))`,
legendFormat: 'p99'
}
]
}
]
};
};
```
### 3. Distributed Tracing
**OpenTelemetry Configuration**
```typescript
// tracing.ts
import { NodeSDK } from '@opentelemetry/sdk-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import { Resource } from '@opentelemetry/resources';
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions';
import { JaegerExporter } from '@opentelemetry/exporter-jaeger';
import { BatchSpanProcessor } from '@opentelemetry/sdk-trace-base';
export class TracingSetup {
private sdk: NodeSDK;
constructor(serviceName: string, environment: string) {
const jaegerExporter = new JaegerExporter({
endpoint: process.env.JAEGER_ENDPOINT || 'http://localhost:14268/api/traces',
});
this.sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: serviceName,
[SemanticResourceAttributes.SERVICE_VERSION]: process.env.SERVICE_VERSION || '1.0.0',
[SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: environment,
}),
traceExporter: jaegerExporter,
spanProcessor: new BatchSpanProcessor(jaegerExporter),
instrumentations: [
getNodeAutoInstrumentations({
'@opentelemetry/instrumentation-fs': { enabled: false },
}),
],
});
}
start() {
this.sdk.start()
.then(() => console.log('Tracing initialized'))
.catch((error) => console.error('Error initializing tracing', error));
}
shutdown() {
return this.sdk.shutdown();
}
}
```
### 4. Log Aggregation
**Fluentd Configuration**
```yaml
# fluent.conf
<source>
@type tail
path /var/log/containers/*.log
pos_file /var/log/fluentd-containers.log.pos
tag kubernetes.*
<parse>
@type json
time_format %Y-%m-%dT%H:%M:%S.%NZ
</parse>
</source>
<filter kubernetes.**>
@type kubernetes_metadata
kubernetes_url "#{ENV['KUBERNETES_SERVICE_HOST']}"
</filter>
<filter kubernetes.**>
@type record_transformer
<record>
cluster_name ${ENV['CLUSTER_NAME']}
environment ${ENV['ENVIRONMENT']}
@timestamp ${time.strftime('%Y-%m-%dT%H:%M:%S.%LZ')}
</record>
</filter>
<match kubernetes.**>
@type elasticsearch
host "#{ENV['FLUENT_ELASTICSEARCH_HOST']}"
port "#{ENV['FLUENT_ELASTICSEARCH_PORT']}"
index_name logstash
logstash_format true
<buffer>
@type file
path /var/log/fluentd-buffers/kubernetes.buffer
flush_interval 5s
chunk_limit_size 2M
</buffer>
</match>
```
**Structured Logging Library**
```python
# structured_logging.py
import json
import logging
from datetime import datetime
from typing import Any, Dict, Optional
class StructuredLogger:
def __init__(self, name: str, service: str, version: str):
self.logger = logging.getLogger(name)
self.service = service
self.version = version
self.default_context = {
'service': service,
'version': version,
'environment': os.getenv('ENVIRONMENT', 'development')
}
def _format_log(self, level: str, message: str, context: Dict[str, Any]) -> str:
log_entry = {
'@timestamp': datetime.utcnow().isoformat() + 'Z',
'level': level,
'message': message,
**self.default_context,
**context
}
trace_context = self._get_trace_context()
if trace_context:
log_entry['trace'] = trace_context
return json.dumps(log_entry)
def info(self, message: str, **context):
log_msg = self._format_log('INFO', message, context)
self.logger.info(log_msg)
def error(self, message: str, error: Optional[Exception] = None, **context):
if error:
context['error'] = {
'type': type(error).__name__,
'message': str(error),
'stacktrace': traceback.format_exc()
}
log_msg = self._format_log('ERROR', message, context)
self.logger.error(log_msg)
```
### 5. Alert Configuration
**Alert Rules**
```yaml
# alerts/application.yml
groups:
- name: application
interval: 30s
rules:
- alert: HighErrorRate
expr: |
sum(rate(http_requests_total{status_code=~"5.."}[5m])) by (service)
/ sum(rate(http_requests_total[5m])) by (service) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: "High error rate on {{ $labels.service }}"
description: "Error rate is {{ $value | humanizePercentage }}"
- alert: SlowResponseTime
expr: |
histogram_quantile(0.95,
sum(rate(http_request_duration_seconds_bucket[5m])) by (service, le)
) > 1
for: 10m
labels:
severity: warning
annotations:
summary: "Slow response time on {{ $labels.service }}"
- name: infrastructure
rules:
- alert: HighCPUUsage
expr: avg(rate(container_cpu_usage_seconds_total[5m])) by (pod) > 0.8
for: 15m
labels:
severity: warning
- alert: HighMemoryUsage
expr: |
container_memory_working_set_bytes / container_spec_memory_limit_bytes > 0.9
for: 10m
labels:
severity: critical
```
**Alertmanager Configuration**
```yaml
# alertmanager.yml
global:
resolve_timeout: 5m
slack_api_url: '$SLACK_API_URL'
route:
group_by: ['alertname', 'cluster', 'service']
group_wait: 10s
group_interval: 10s
repeat_interval: 12h
receiver: 'default'
routes:
- match:
severity: critical
receiver: pagerduty
continue: true
- match_re:
severity: critical|warning
receiver: slack
receivers:
- name: 'slack'
slack_configs:
- channel: '#alerts'
title: '{{ .GroupLabels.alertname }}'
text: '{{ range .Alerts }}{{ .Annotations.description }}{{ end }}'
send_resolved: true
- name: 'pagerduty'
pagerduty_configs:
- service_key: '$PAGERDUTY_SERVICE_KEY'
description: '{{ .GroupLabels.alertname }}: {{ .Annotations.summary }}'
```
### 6. SLO Implementation
**SLO Configuration**
```typescript
// slo-manager.ts
interface SLO {
name: string;
target: number; // e.g., 99.9
window: string; // e.g., '30d'
burnRates: BurnRate[];
}
export class SLOManager {
private slos: SLO[] = [
{
name: 'API Availability',
target: 99.9,
window: '30d',
burnRates: [
{ window: '1h', threshold: 14.4, severity: 'critical' },
{ window: '6h', threshold: 6, severity: 'critical' },
{ window: '1d', threshold: 3, severity: 'warning' }
]
}
];
generateSLOQueries(): string {
return this.slos.map(slo => this.generateSLOQuery(slo)).join('\n\n');
}
private generateSLOQuery(slo: SLO): string {
const errorBudget = 1 - (slo.target / 100);
return `
# ${slo.name} SLO
- record: slo:${this.sanitizeName(slo.name)}:error_budget
expr: ${errorBudget}
- record: slo:${this.sanitizeName(slo.name)}:consumed_error_budget
expr: |
1 - (sum(rate(successful_requests[${slo.window}])) / sum(rate(total_requests[${slo.window}])))
`;
}
}
```
### 7. Infrastructure as Code
**Terraform Configuration**
```hcl
# monitoring.tf
module "prometheus" {
source = "./modules/prometheus"
namespace = "monitoring"
storage_size = "100Gi"
retention_days = 30
external_labels = {
cluster = var.cluster_name
region = var.region
}
}
module "grafana" {
source = "./modules/grafana"
namespace = "monitoring"
admin_password = var.grafana_admin_password
datasources = [
{
name = "Prometheus"
type = "prometheus"
url = "http://prometheus:9090"
}
]
}
module "alertmanager" {
source = "./modules/alertmanager"
namespace = "monitoring"
config = templatefile("${path.module}/alertmanager.yml", {
slack_webhook = var.slack_webhook
pagerduty_key = var.pagerduty_service_key
})
}
```
## Output Format
1. **Infrastructure Assessment**: Current monitoring capabilities analysis
2. **Monitoring Architecture**: Complete monitoring stack design
3. **Implementation Plan**: Step-by-step deployment guide
4. **Metric Definitions**: Comprehensive metrics catalog
5. **Dashboard Templates**: Ready-to-use Grafana dashboards
6. **Alert Runbooks**: Detailed alert response procedures
7. **SLO Definitions**: Service level objectives and error budgets
8. **Integration Guide**: Service instrumentation instructions
Focus on creating a monitoring system that provides actionable insights, reduces MTTR, and enables proactive issue detection.
💡 Suggested Test Inputs
Loading suggested inputs...
🎯 Community Test Results
Loading results...
📦 Package Info
- Format
- claude
- Type
- slash-command
- Category
- data
- License
- MIT