@wshobson/commands/llm-application-dev/ai-assistant
You are an AI assistant development expert specializing in creating intelligent conversational interfaces, chatbots, and AI-powered applications. Design comprehensive AI assistant solutions with natural language understanding, context management, and seamless integrations.
prpm install @wshobson/commands/llm-application-dev/ai-assistant6 total downloads
📄 Full Prompt Content
# AI Assistant Development
You are an AI assistant development expert specializing in creating intelligent conversational interfaces, chatbots, and AI-powered applications. Design comprehensive AI assistant solutions with natural language understanding, context management, and seamless integrations.
## Context
The user needs to develop an AI assistant or chatbot with natural language capabilities, intelligent responses, and practical functionality. Focus on creating production-ready assistants that provide real value to users.
## Requirements
$ARGUMENTS
## Instructions
### 1. AI Assistant Architecture
Design comprehensive assistant architecture:
**Assistant Architecture Framework**
```python
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from abc import ABC, abstractmethod
import asyncio
@dataclass
class ConversationContext:
"""Maintains conversation state and context"""
user_id: str
session_id: str
messages: List[Dict[str, Any]]
user_profile: Dict[str, Any]
conversation_state: Dict[str, Any]
metadata: Dict[str, Any]
class AIAssistantArchitecture:
def __init__(self, config: Dict[str, Any]):
self.config = config
self.components = self._initialize_components()
def design_architecture(self):
"""Design comprehensive AI assistant architecture"""
return {
'core_components': {
'nlu': self._design_nlu_component(),
'dialog_manager': self._design_dialog_manager(),
'response_generator': self._design_response_generator(),
'context_manager': self._design_context_manager(),
'integration_layer': self._design_integration_layer()
},
'data_flow': self._design_data_flow(),
'deployment': self._design_deployment_architecture(),
'scalability': self._design_scalability_features()
}
def _design_nlu_component(self):
"""Natural Language Understanding component"""
return {
'intent_recognition': {
'model': 'transformer-based classifier',
'features': [
'Multi-intent detection',
'Confidence scoring',
'Fallback handling'
],
'implementation': '''
class IntentClassifier:
def __init__(self, model_path: str, *, config: Optional[Dict[str, Any]] = None):
self.model = self.load_model(model_path)
self.intents = self.load_intent_schema()
default_config = {"threshold": 0.65}
self.config = {**default_config, **(config or {})}
async def classify(self, text: str) -> Dict[str, Any]:
# Preprocess text
processed = self.preprocess(text)
# Get model predictions
predictions = await self.model.predict(processed)
# Extract intents with confidence
intents = []
for intent, confidence in predictions:
if confidence > self.config['threshold']:
intents.append({
'name': intent,
'confidence': confidence,
'parameters': self.extract_parameters(text, intent)
})
return {
'intents': intents,
'primary_intent': intents[0] if intents else None,
'requires_clarification': len(intents) > 1
}
'''
},
'entity_extraction': {
'model': 'NER with custom entities',
'features': [
'Domain-specific entities',
'Contextual extraction',
'Entity resolution'
]
},
'sentiment_analysis': {
'model': 'Fine-tuned sentiment classifier',
'features': [
'Emotion detection',
'Urgency classification',
'User satisfaction tracking'
]
}
}
def _design_dialog_manager(self):
"""Dialog management system"""
return '''
class DialogManager:
"""Manages conversation flow and state"""
def __init__(self):
self.state_machine = ConversationStateMachine()
self.policy_network = DialogPolicy()
async def process_turn(self,
context: ConversationContext,
nlu_result: Dict[str, Any]) -> Dict[str, Any]:
# Determine current state
current_state = self.state_machine.get_state(context)
# Apply dialog policy
action = await self.policy_network.select_action(
current_state,
nlu_result,
context
)
# Execute action
result = await self.execute_action(action, context)
# Update state
new_state = self.state_machine.transition(
current_state,
action,
result
)
return {
'action': action,
'new_state': new_state,
'response_data': result
}
async def execute_action(self, action: str, context: ConversationContext):
"""Execute dialog action"""
action_handlers = {
'greet': self.handle_greeting,
'provide_info': self.handle_information_request,
'clarify': self.handle_clarification,
'confirm': self.handle_confirmation,
'execute_task': self.handle_task_execution,
'end_conversation': self.handle_conversation_end
}
handler = action_handlers.get(action, self.handle_unknown)
return await handler(context)
'''
```
### 2. Natural Language Processing
Implement advanced NLP capabilities:
**NLP Pipeline Implementation**
```python
class NLPPipeline:
def __init__(self):
self.tokenizer = self._initialize_tokenizer()
self.embedder = self._initialize_embedder()
self.models = self._load_models()
async def process_message(self, message: str, context: ConversationContext):
"""Process user message through NLP pipeline"""
# Tokenization and preprocessing
tokens = self.tokenizer.tokenize(message)
# Generate embeddings
embeddings = await self.embedder.embed(tokens)
# Parallel processing of NLP tasks
tasks = [
self.detect_intent(embeddings),
self.extract_entities(tokens, embeddings),
self.analyze_sentiment(embeddings),
self.detect_language(tokens),
self.check_spelling(tokens)
]
results = await asyncio.gather(*tasks)
return {
'intent': results[0],
'entities': results[1],
'sentiment': results[2],
'language': results[3],
'corrections': results[4],
'original_message': message,
'processed_tokens': tokens
}
async def detect_intent(self, embeddings):
"""Advanced intent detection"""
# Multi-label classification
intent_scores = await self.models['intent_classifier'].predict(embeddings)
# Hierarchical intent detection
primary_intent = self.get_primary_intent(intent_scores)
sub_intents = self.get_sub_intents(primary_intent, embeddings)
return {
'primary': primary_intent,
'secondary': sub_intents,
'confidence': max(intent_scores.values()),
'all_scores': intent_scores
}
def extract_entities(self, tokens, embeddings):
"""Extract and resolve entities"""
# Named Entity Recognition
entities = self.models['ner'].extract(tokens, embeddings)
# Entity linking and resolution
resolved_entities = []
for entity in entities:
resolved = self.resolve_entity(entity)
resolved_entities.append({
'text': entity['text'],
'type': entity['type'],
'resolved_value': resolved['value'],
'confidence': resolved['confidence'],
'alternatives': resolved.get('alternatives', [])
})
return resolved_entities
def build_semantic_understanding(self, nlu_result, context):
"""Build semantic representation of user intent"""
return {
'user_goal': self.infer_user_goal(nlu_result, context),
'required_information': self.identify_missing_info(nlu_result),
'constraints': self.extract_constraints(nlu_result),
'preferences': self.extract_preferences(nlu_result, context)
}
```
### 3. Conversation Flow Design
Design intelligent conversation flows:
**Conversation Flow Engine**
```python
class ConversationFlowEngine:
def __init__(self):
self.flows = self._load_conversation_flows()
self.state_tracker = StateTracker()
def design_conversation_flow(self):
"""Design multi-turn conversation flows"""
return {
'greeting_flow': {
'triggers': ['hello', 'hi', 'greetings'],
'nodes': [
{
'id': 'greet_user',
'type': 'response',
'content': self.personalized_greeting,
'next': 'ask_how_to_help'
},
{
'id': 'ask_how_to_help',
'type': 'question',
'content': "How can I assist you today?",
'expected_intents': ['request_help', 'ask_question'],
'timeout': 30,
'timeout_action': 'offer_suggestions'
}
]
},
'task_completion_flow': {
'triggers': ['task_request'],
'nodes': [
{
'id': 'understand_task',
'type': 'nlu_processing',
'extract': ['task_type', 'parameters'],
'next': 'check_requirements'
},
{
'id': 'check_requirements',
'type': 'validation',
'validate': self.validate_task_requirements,
'on_success': 'confirm_task',
'on_missing': 'request_missing_info'
},
{
'id': 'request_missing_info',
'type': 'slot_filling',
'slots': self.get_required_slots,
'prompts': self.get_slot_prompts,
'next': 'confirm_task'
},
{
'id': 'confirm_task',
'type': 'confirmation',
'content': self.generate_task_summary,
'on_confirm': 'execute_task',
'on_deny': 'clarify_task'
}
]
}
}
async def execute_flow(self, flow_id: str, context: ConversationContext):
"""Execute a conversation flow"""
flow = self.flows[flow_id]
current_node = flow['nodes'][0]
while current_node:
result = await self.execute_node(current_node, context)
# Determine next node
if result.get('user_input'):
next_node_id = self.determine_next_node(
current_node,
result['user_input'],
context
)
else:
next_node_id = current_node.get('next')
current_node = self.get_node(flow, next_node_id)
# Update context
context.conversation_state.update(result.get('state_updates', {}))
return context
```
### 4. Response Generation
Create intelligent response generation:
**Response Generator**
```python
class ResponseGenerator:
def __init__(self, llm_client=None):
self.llm = llm_client
self.templates = self._load_response_templates()
self.personality = self._load_personality_config()
async def generate_response(self,
intent: str,
context: ConversationContext,
data: Dict[str, Any]) -> str:
"""Generate contextual responses"""
# Select response strategy
if self.should_use_template(intent):
response = self.generate_from_template(intent, data)
elif self.should_use_llm(intent, context):
response = await self.generate_with_llm(intent, context, data)
else:
response = self.generate_hybrid_response(intent, context, data)
# Apply personality and tone
response = self.apply_personality(response, context)
# Ensure response appropriateness
response = self.validate_response(response, context)
return response
async def generate_with_llm(self, intent, context, data):
"""Generate response using LLM"""
# Construct prompt
prompt = self.build_llm_prompt(intent, context, data)
# Set generation parameters
params = {
'temperature': self.get_temperature(intent),
'max_tokens': 150,
'stop_sequences': ['\n\n', 'User:', 'Human:']
}
# Generate response
response = await self.llm.generate(prompt, **params)
# Post-process response
return self.post_process_llm_response(response)
def build_llm_prompt(self, intent, context, data):
"""Build context-aware prompt for LLM"""
return f"""
You are a helpful AI assistant with the following characteristics:
{self.personality.description}
Conversation history:
{self.format_conversation_history(context.messages[-5:])}
User intent: {intent}
Relevant data: {json.dumps(data, indent=2)}
Generate a helpful, concise response that:
1. Addresses the user's intent
2. Uses the provided data appropriately
3. Maintains conversation continuity
4. Follows the personality guidelines
Response:"""
def generate_from_template(self, intent, data):
"""Generate response from templates"""
template = self.templates.get(intent)
if not template:
return self.get_fallback_response()
# Select template variant
variant = self.select_template_variant(template, data)
# Fill template slots
response = variant
for key, value in data.items():
response = response.replace(f"{{{key}}}", str(value))
return response
def apply_personality(self, response, context):
"""Apply personality traits to response"""
# Add personality markers
if self.personality.get('friendly'):
response = self.add_friendly_markers(response)
if self.personality.get('professional'):
response = self.ensure_professional_tone(response)
# Adjust based on user preferences
if context.user_profile.get('prefers_brief'):
response = self.make_concise(response)
return response
```
### 5. Context Management
Implement sophisticated context management:
**Context Management System**
```python
class ContextManager:
def __init__(self):
self.short_term_memory = ShortTermMemory()
self.long_term_memory = LongTermMemory()
self.working_memory = WorkingMemory()
async def manage_context(self,
new_input: Dict[str, Any],
current_context: ConversationContext) -> ConversationContext:
"""Manage conversation context"""
# Update conversation history
current_context.messages.append({
'role': 'user',
'content': new_input['message'],
'timestamp': datetime.now(),
'metadata': new_input.get('metadata', {})
})
# Resolve references
resolved_input = await self.resolve_references(new_input, current_context)
# Update working memory
self.working_memory.update(resolved_input, current_context)
# Detect topic changes
topic_shift = self.detect_topic_shift(resolved_input, current_context)
if topic_shift:
current_context = self.handle_topic_shift(topic_shift, current_context)
# Maintain entity state
current_context = self.update_entity_state(resolved_input, current_context)
# Prune old context if needed
if len(current_context.messages) > self.config['max_context_length']:
current_context = self.prune_context(current_context)
return current_context
async def resolve_references(self, input_data, context):
"""Resolve pronouns and references"""
text = input_data['message']
# Pronoun resolution
pronouns = self.extract_pronouns(text)
for pronoun in pronouns:
referent = self.find_referent(pronoun, context)
if referent:
text = text.replace(pronoun['text'], referent['resolved'])
# Temporal reference resolution
temporal_refs = self.extract_temporal_references(text)
for ref in temporal_refs:
resolved_time = self.resolve_temporal_reference(ref, context)
text = text.replace(ref['text'], str(resolved_time))
input_data['resolved_message'] = text
return input_data
def maintain_entity_state(self):
"""Track entity states across conversation"""
return '''
class EntityStateTracker:
def __init__(self):
self.entities = {}
def update_entity(self, entity_id: str, updates: Dict[str, Any]):
"""Update entity state"""
if entity_id not in self.entities:
self.entities[entity_id] = {
'id': entity_id,
'type': updates.get('type'),
'attributes': {},
'history': []
}
# Record history
self.entities[entity_id]['history'].append({
'timestamp': datetime.now(),
'updates': updates
})
# Apply updates
self.entities[entity_id]['attributes'].update(updates)
def get_entity_state(self, entity_id: str) -> Optional[Dict[str, Any]]:
"""Get current entity state"""
return self.entities.get(entity_id)
def query_entities(self, entity_type: str = None, **filters):
"""Query entities by type and attributes"""
results = []
for entity in self.entities.values():
if entity_type and entity['type'] != entity_type:
continue
matches = True
for key, value in filters.items():
if entity['attributes'].get(key) != value:
matches = False
break
if matches:
results.append(entity)
return results
'''
```
### 6. Integration with LLMs
Integrate with various LLM providers:
**LLM Integration Layer**
```python
class LLMIntegrationLayer:
def __init__(self):
self.providers = {
'openai': OpenAIProvider(),
'anthropic': AnthropicProvider(),
'local': LocalLLMProvider()
}
self.current_provider = None
async def setup_llm_integration(self, provider: str, config: Dict[str, Any]):
"""Setup LLM integration"""
self.current_provider = self.providers[provider]
await self.current_provider.initialize(config)
return {
'provider': provider,
'capabilities': self.current_provider.get_capabilities(),
'rate_limits': self.current_provider.get_rate_limits()
}
async def generate_completion(self,
prompt: str,
system_prompt: str = None,
**kwargs):
"""Generate completion with fallback handling"""
try:
# Primary attempt
response = await self.current_provider.complete(
prompt=prompt,
system_prompt=system_prompt,
**kwargs
)
# Validate response
if self.is_valid_response(response):
return response
else:
return await self.handle_invalid_response(prompt, response)
except RateLimitError:
# Switch to fallback provider
return await self.use_fallback_provider(prompt, system_prompt, **kwargs)
except Exception as e:
# Log error and use cached response if available
return self.get_cached_response(prompt) or self.get_default_response()
def create_function_calling_interface(self):
"""Create function calling interface for LLMs"""
return '''
class FunctionCallingInterface:
def __init__(self):
self.functions = {}
def register_function(self,
name: str,
func: callable,
description: str,
parameters: Dict[str, Any]):
"""Register a function for LLM to call"""
self.functions[name] = {
'function': func,
'description': description,
'parameters': parameters
}
async def process_function_call(self, llm_response):
"""Process function calls from LLM"""
if 'function_call' not in llm_response:
return llm_response
function_name = llm_response['function_call']['name']
arguments = llm_response['function_call']['arguments']
if function_name not in self.functions:
return {'error': f'Unknown function: {function_name}'}
# Validate arguments
validated_args = self.validate_arguments(
function_name,
arguments
)
# Execute function
result = await self.functions[function_name]['function'](**validated_args)
# Return result for LLM to process
return {
'function_result': result,
'function_name': function_name
}
'''
```
### 7. Testing Conversational AI
Implement comprehensive testing:
**Conversation Testing Framework**
```python
class ConversationTestFramework:
def __init__(self):
self.test_suites = []
self.metrics = ConversationMetrics()
def create_test_suite(self):
"""Create comprehensive test suite"""
return {
'unit_tests': self._create_unit_tests(),
'integration_tests': self._create_integration_tests(),
'conversation_tests': self._create_conversation_tests(),
'performance_tests': self._create_performance_tests(),
'user_simulation': self._create_user_simulation()
}
def _create_conversation_tests(self):
"""Test multi-turn conversations"""
return '''
class ConversationTest:
async def test_multi_turn_conversation(self):
"""Test complete conversation flow"""
assistant = AIAssistant()
context = ConversationContext(user_id="test_user")
# Conversation script
conversation = [
{
'user': "Hello, I need help with my order",
'expected_intent': 'order_help',
'expected_action': 'ask_order_details'
},
{
'user': "My order number is 12345",
'expected_entities': [{'type': 'order_id', 'value': '12345'}],
'expected_action': 'retrieve_order'
},
{
'user': "When will it arrive?",
'expected_intent': 'delivery_inquiry',
'should_use_context': True
}
]
for turn in conversation:
# Send user message
response = await assistant.process_message(
turn['user'],
context
)
# Validate intent detection
if 'expected_intent' in turn:
assert response['intent'] == turn['expected_intent']
# Validate entity extraction
if 'expected_entities' in turn:
self.validate_entities(
response['entities'],
turn['expected_entities']
)
# Validate context usage
if turn.get('should_use_context'):
assert 'order_id' in response['context_used']
def test_error_handling(self):
"""Test error scenarios"""
error_cases = [
{
'input': "askdjfkajsdf",
'expected_behavior': 'fallback_response'
},
{
'input': "I want to [REDACTED]",
'expected_behavior': 'safety_response'
},
{
'input': "Tell me about " + "x" * 1000,
'expected_behavior': 'length_limit_response'
}
]
for case in error_cases:
response = assistant.process_message(case['input'])
assert response['behavior'] == case['expected_behavior']
'''
def create_automated_testing(self):
"""Automated conversation testing"""
return '''
class AutomatedConversationTester:
def __init__(self):
self.test_generator = TestCaseGenerator()
self.evaluator = ResponseEvaluator()
async def run_automated_tests(self, num_tests: int = 100):
"""Run automated conversation tests"""
results = {
'total_tests': num_tests,
'passed': 0,
'failed': 0,
'metrics': {}
}
for i in range(num_tests):
# Generate test case
test_case = self.test_generator.generate()
# Run conversation
conversation_log = await self.run_conversation(test_case)
# Evaluate results
evaluation = self.evaluator.evaluate(
conversation_log,
test_case['expectations']
)
if evaluation['passed']:
results['passed'] += 1
else:
results['failed'] += 1
# Collect metrics
self.update_metrics(results['metrics'], evaluation['metrics'])
return results
def generate_adversarial_tests(self):
"""Generate adversarial test cases"""
return [
# Ambiguous inputs
"I want that thing we discussed",
# Context switching
"Actually, forget that. Tell me about the weather",
# Multiple intents
"Cancel my order and also update my address",
# Incomplete information
"Book a flight",
# Contradictions
"I want a vegetarian meal with bacon"
]
'''
```
### 8. Deployment and Scaling
Deploy and scale AI assistants:
**Deployment Architecture**
```python
class AssistantDeployment:
def create_deployment_architecture(self):
"""Create scalable deployment architecture"""
return {
'containerization': '''
# Dockerfile for AI Assistant
FROM python:3.11-slim
WORKDIR /app
# Install dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy application
COPY . .
# Load models at build time
RUN python -m app.model_loader
# Expose port
EXPOSE 8080
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD python -m app.health_check
# Run application
CMD ["gunicorn", "--worker-class", "uvicorn.workers.UvicornWorker", \
"--workers", "4", "--bind", "0.0.0.0:8080", "app.main:app"]
''',
'kubernetes_deployment': '''
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-assistant
spec:
replicas: 3
selector:
matchLabels:
app: ai-assistant
template:
metadata:
labels:
app: ai-assistant
spec:
containers:
- name: assistant
image: ai-assistant:latest
ports:
- containerPort: 8080
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
env:
- name: MODEL_CACHE_SIZE
value: "1000"
- name: MAX_CONCURRENT_SESSIONS
value: "100"
livenessProbe:
httpGet:
path: /health
port: 8080
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 8080
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: ai-assistant-service
spec:
selector:
app: ai-assistant
ports:
- port: 80
targetPort: 8080
type: LoadBalancer
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ai-assistant-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ai-assistant
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
''',
'caching_strategy': self._design_caching_strategy(),
'load_balancing': self._design_load_balancing()
}
def _design_caching_strategy(self):
"""Design caching for performance"""
return '''
class AssistantCache:
def __init__(self):
self.response_cache = ResponseCache()
self.model_cache = ModelCache()
self.context_cache = ContextCache()
async def get_cached_response(self,
message: str,
context_hash: str) -> Optional[str]:
"""Get cached response if available"""
cache_key = self.generate_cache_key(message, context_hash)
# Check response cache
cached = await self.response_cache.get(cache_key)
if cached and not self.is_expired(cached):
return cached['response']
return None
def cache_response(self,
message: str,
context_hash: str,
response: str,
ttl: int = 3600):
"""Cache response with TTL"""
cache_key = self.generate_cache_key(message, context_hash)
self.response_cache.set(
cache_key,
{
'response': response,
'timestamp': datetime.now(),
'ttl': ttl
}
)
def preload_model_cache(self):
"""Preload frequently used models"""
models_to_cache = [
'intent_classifier',
'entity_extractor',
'response_generator'
]
for model_name in models_to_cache:
model = load_model(model_name)
self.model_cache.store(model_name, model)
'''
```
### 9. Monitoring and Analytics
Monitor assistant performance:
**Assistant Analytics System**
```python
class AssistantAnalytics:
def __init__(self):
self.metrics_collector = MetricsCollector()
self.analytics_engine = AnalyticsEngine()
def create_monitoring_dashboard(self):
"""Create monitoring dashboard configuration"""
return {
'real_time_metrics': {
'active_sessions': 'gauge',
'messages_per_second': 'counter',
'response_time_p95': 'histogram',
'intent_accuracy': 'gauge',
'fallback_rate': 'gauge'
},
'conversation_metrics': {
'avg_conversation_length': 'gauge',
'completion_rate': 'gauge',
'user_satisfaction': 'gauge',
'escalation_rate': 'gauge'
},
'system_metrics': {
'model_inference_time': 'histogram',
'cache_hit_rate': 'gauge',
'error_rate': 'counter',
'resource_utilization': 'gauge'
},
'alerts': [
{
'name': 'high_fallback_rate',
'condition': 'fallback_rate > 0.2',
'severity': 'warning'
},
{
'name': 'slow_response_time',
'condition': 'response_time_p95 > 2000',
'severity': 'critical'
}
]
}
def analyze_conversation_quality(self):
"""Analyze conversation quality metrics"""
return '''
class ConversationQualityAnalyzer:
def analyze_conversations(self, time_range: str):
"""Analyze conversation quality"""
conversations = self.fetch_conversations(time_range)
metrics = {
'intent_recognition': self.analyze_intent_accuracy(conversations),
'response_relevance': self.analyze_response_relevance(conversations),
'conversation_flow': self.analyze_conversation_flow(conversations),
'user_satisfaction': self.analyze_satisfaction(conversations),
'error_patterns': self.identify_error_patterns(conversations)
}
return self.generate_quality_report(metrics)
def identify_improvement_areas(self, analysis):
"""Identify areas for improvement"""
improvements = []
# Low intent accuracy
if analysis['intent_recognition']['accuracy'] < 0.85:
improvements.append({
'area': 'Intent Recognition',
'issue': 'Low accuracy in intent detection',
'recommendation': 'Retrain intent classifier with more examples',
'priority': 'high'
})
# High fallback rate
if analysis['conversation_flow']['fallback_rate'] > 0.15:
improvements.append({
'area': 'Coverage',
'issue': 'High fallback rate',
'recommendation': 'Expand training data for uncovered intents',
'priority': 'medium'
})
return improvements
'''
```
### 10. Continuous Improvement
Implement continuous improvement cycle:
**Improvement Pipeline**
```python
class ContinuousImprovement:
def create_improvement_pipeline(self):
"""Create continuous improvement pipeline"""
return {
'data_collection': '''
class ConversationDataCollector:
async def collect_feedback(self, session_id: str):
"""Collect user feedback"""
feedback_prompt = {
'satisfaction': 'How satisfied were you with this conversation? (1-5)',
'resolved': 'Was your issue resolved?',
'improvements': 'How could we improve?'
}
feedback = await self.prompt_user_feedback(
session_id,
feedback_prompt
)
# Store feedback
await self.store_feedback({
'session_id': session_id,
'timestamp': datetime.now(),
'feedback': feedback,
'conversation_metadata': self.get_session_metadata(session_id)
})
return feedback
def identify_training_opportunities(self):
"""Identify conversations for training"""
# Find low-confidence interactions
low_confidence = self.find_low_confidence_interactions()
# Find failed conversations
failed = self.find_failed_conversations()
# Find highly-rated conversations
exemplary = self.find_exemplary_conversations()
return {
'needs_improvement': low_confidence + failed,
'good_examples': exemplary
}
''',
'model_retraining': '''
class ModelRetrainer:
async def retrain_models(self, new_data):
"""Retrain models with new data"""
# Prepare training data
training_data = self.prepare_training_data(new_data)
# Validate data quality
validation_result = self.validate_training_data(training_data)
if not validation_result['passed']:
return {'error': 'Data quality check failed', 'issues': validation_result['issues']}
# Retrain models
models_to_retrain = ['intent_classifier', 'entity_extractor']
for model_name in models_to_retrain:
# Load current model
current_model = self.load_model(model_name)
# Create new version
new_model = await self.train_model(
model_name,
training_data,
base_model=current_model
)
# Evaluate new model
evaluation = await self.evaluate_model(
new_model,
self.get_test_set()
)
# Deploy if improved
if evaluation['performance'] > current_model.performance:
await self.deploy_model(new_model, model_name)
return {'status': 'completed', 'models_updated': models_to_retrain}
''',
'a_b_testing': '''
class ABTestingFramework:
def create_ab_test(self,
test_name: str,
variants: List[Dict[str, Any]],
metrics: List[str]):
"""Create A/B test for assistant improvements"""
test = {
'id': generate_test_id(),
'name': test_name,
'variants': variants,
'metrics': metrics,
'allocation': self.calculate_traffic_allocation(variants),
'duration': self.estimate_test_duration(metrics)
}
# Deploy test
self.deploy_test(test)
return test
async def analyze_test_results(self, test_id: str):
"""Analyze A/B test results"""
data = await self.collect_test_data(test_id)
results = {}
for metric in data['metrics']:
# Statistical analysis
analysis = self.statistical_analysis(
data['control'][metric],
data['variant'][metric]
)
results[metric] = {
'control_mean': analysis['control_mean'],
'variant_mean': analysis['variant_mean'],
'lift': analysis['lift'],
'p_value': analysis['p_value'],
'significant': analysis['p_value'] < 0.05
}
return results
'''
}
```
## Output Format
1. **Architecture Design**: Complete AI assistant architecture with components
2. **NLP Implementation**: Natural language processing pipeline and models
3. **Conversation Flows**: Dialog management and flow design
4. **Response Generation**: Intelligent response creation with LLM integration
5. **Context Management**: Sophisticated context and state management
6. **Testing Framework**: Comprehensive testing for conversational AI
7. **Deployment Guide**: Scalable deployment architecture
8. **Monitoring Setup**: Analytics and performance monitoring
9. **Improvement Pipeline**: Continuous improvement processes
Focus on creating production-ready AI assistants that provide real value through natural conversations, intelligent responses, and continuous learning from user interactions.💡 Suggested Test Inputs
Loading suggested inputs...
🎯 Community Test Results
Loading results...
📦 Package Info
- Format
- claude
- Type
- slash-command
- Category
- testing
- License
- MIT