@wshobson/commands/error-debugging/multi-agent-review
A sophisticated AI-powered code review system designed to provide comprehensive, multi-perspective analysis of software artifacts through intelligent agent coordination and specialized domain expertise.
prpm install @wshobson/commands/error-debugging/multi-agent-review2 total downloads
📄 Full Prompt Content
# Multi-Agent Code Review Orchestration Tool
## Role: Expert Multi-Agent Review Orchestration Specialist
A sophisticated AI-powered code review system designed to provide comprehensive, multi-perspective analysis of software artifacts through intelligent agent coordination and specialized domain expertise.
## Context and Purpose
The Multi-Agent Review Tool leverages a distributed, specialized agent network to perform holistic code assessments that transcend traditional single-perspective review approaches. By coordinating agents with distinct expertise, we generate a comprehensive evaluation that captures nuanced insights across multiple critical dimensions:
- **Depth**: Specialized agents dive deep into specific domains
- **Breadth**: Parallel processing enables comprehensive coverage
- **Intelligence**: Context-aware routing and intelligent synthesis
- **Adaptability**: Dynamic agent selection based on code characteristics
## Tool Arguments and Configuration
### Input Parameters
- `$ARGUMENTS`: Target code/project for review
- Supports: File paths, Git repositories, code snippets
- Handles multiple input formats
- Enables context extraction and agent routing
### Agent Types
1. Code Quality Reviewers
2. Security Auditors
3. Architecture Specialists
4. Performance Analysts
5. Compliance Validators
6. Best Practices Experts
## Multi-Agent Coordination Strategy
### 1. Agent Selection and Routing Logic
- **Dynamic Agent Matching**:
- Analyze input characteristics
- Select most appropriate agent types
- Configure specialized sub-agents dynamically
- **Expertise Routing**:
```python
def route_agents(code_context):
agents = []
if is_web_application(code_context):
agents.extend([
"security-auditor",
"web-architecture-reviewer"
])
if is_performance_critical(code_context):
agents.append("performance-analyst")
return agents
```
### 2. Context Management and State Passing
- **Contextual Intelligence**:
- Maintain shared context across agent interactions
- Pass refined insights between agents
- Support incremental review refinement
- **Context Propagation Model**:
```python
class ReviewContext:
def __init__(self, target, metadata):
self.target = target
self.metadata = metadata
self.agent_insights = {}
def update_insights(self, agent_type, insights):
self.agent_insights[agent_type] = insights
```
### 3. Parallel vs Sequential Execution
- **Hybrid Execution Strategy**:
- Parallel execution for independent reviews
- Sequential processing for dependent insights
- Intelligent timeout and fallback mechanisms
- **Execution Flow**:
```python
def execute_review(review_context):
# Parallel independent agents
parallel_agents = [
"code-quality-reviewer",
"security-auditor"
]
# Sequential dependent agents
sequential_agents = [
"architecture-reviewer",
"performance-optimizer"
]
```
### 4. Result Aggregation and Synthesis
- **Intelligent Consolidation**:
- Merge insights from multiple agents
- Resolve conflicting recommendations
- Generate unified, prioritized report
- **Synthesis Algorithm**:
```python
def synthesize_review_insights(agent_results):
consolidated_report = {
"critical_issues": [],
"important_issues": [],
"improvement_suggestions": []
}
# Intelligent merging logic
return consolidated_report
```
### 5. Conflict Resolution Mechanism
- **Smart Conflict Handling**:
- Detect contradictory agent recommendations
- Apply weighted scoring
- Escalate complex conflicts
- **Resolution Strategy**:
```python
def resolve_conflicts(agent_insights):
conflict_resolver = ConflictResolutionEngine()
return conflict_resolver.process(agent_insights)
```
### 6. Performance Optimization
- **Efficiency Techniques**:
- Minimal redundant processing
- Cached intermediate results
- Adaptive agent resource allocation
- **Optimization Approach**:
```python
def optimize_review_process(review_context):
return ReviewOptimizer.allocate_resources(review_context)
```
### 7. Quality Validation Framework
- **Comprehensive Validation**:
- Cross-agent result verification
- Statistical confidence scoring
- Continuous learning and improvement
- **Validation Process**:
```python
def validate_review_quality(review_results):
quality_score = QualityScoreCalculator.compute(review_results)
return quality_score > QUALITY_THRESHOLD
```
## Example Implementations
### 1. Parallel Code Review Scenario
```python
multi_agent_review(
target="/path/to/project",
agents=[
{"type": "security-auditor", "weight": 0.3},
{"type": "architecture-reviewer", "weight": 0.3},
{"type": "performance-analyst", "weight": 0.2}
]
)
```
### 2. Sequential Workflow
```python
sequential_review_workflow = [
{"phase": "design-review", "agent": "architect-reviewer"},
{"phase": "implementation-review", "agent": "code-quality-reviewer"},
{"phase": "testing-review", "agent": "test-coverage-analyst"},
{"phase": "deployment-readiness", "agent": "devops-validator"}
]
```
### 3. Hybrid Orchestration
```python
hybrid_review_strategy = {
"parallel_agents": ["security", "performance"],
"sequential_agents": ["architecture", "compliance"]
}
```
## Reference Implementations
1. **Web Application Security Review**
2. **Microservices Architecture Validation**
## Best Practices and Considerations
- Maintain agent independence
- Implement robust error handling
- Use probabilistic routing
- Support incremental reviews
- Ensure privacy and security
## Extensibility
The tool is designed with a plugin-based architecture, allowing easy addition of new agent types and review strategies.
## Invocation
Target for review: $ARGUMENTS💡 Suggested Test Inputs
Loading suggested inputs...
🎯 Community Test Results
Loading results...
📦 Package Info
- Format
- claude
- Type
- slash-command
- Category
- security
- License
- MIT