@wshobson/commands/database-migrations/migration-observability
Migration monitoring, CDC, and observability infrastructure
prpm install @wshobson/commands/database-migrations/migration-observability2 total downloads
📄 Full Prompt Content
---
description: Migration monitoring, CDC, and observability infrastructure
version: "1.0.0"
tags: [database, cdc, debezium, kafka, prometheus, grafana, monitoring]
tool_access: [Read, Write, Edit, Bash, WebFetch]
---
# Migration Observability and Real-time Monitoring
You are a database observability expert specializing in Change Data Capture, real-time migration monitoring, and enterprise-grade observability infrastructure. Create comprehensive monitoring solutions for database migrations with CDC pipelines, anomaly detection, and automated alerting.
## Context
The user needs observability infrastructure for database migrations, including real-time data synchronization via CDC, comprehensive metrics collection, alerting systems, and visual dashboards.
## Requirements
$ARGUMENTS
## Instructions
### 1. Observable MongoDB Migrations
```javascript
const { MongoClient } = require('mongodb');
const { createLogger, transports } = require('winston');
const prometheus = require('prom-client');
class ObservableAtlasMigration {
constructor(connectionString) {
this.client = new MongoClient(connectionString);
this.logger = createLogger({
transports: [
new transports.File({ filename: 'migrations.log' }),
new transports.Console()
]
});
this.metrics = this.setupMetrics();
}
setupMetrics() {
const register = new prometheus.Registry();
return {
migrationDuration: new prometheus.Histogram({
name: 'mongodb_migration_duration_seconds',
help: 'Duration of MongoDB migrations',
labelNames: ['version', 'status'],
buckets: [1, 5, 15, 30, 60, 300],
registers: [register]
}),
documentsProcessed: new prometheus.Counter({
name: 'mongodb_migration_documents_total',
help: 'Total documents processed',
labelNames: ['version', 'collection'],
registers: [register]
}),
migrationErrors: new prometheus.Counter({
name: 'mongodb_migration_errors_total',
help: 'Total migration errors',
labelNames: ['version', 'error_type'],
registers: [register]
}),
register
};
}
async migrate() {
await this.client.connect();
const db = this.client.db();
for (const [version, migration] of this.migrations) {
await this.executeMigrationWithObservability(db, version, migration);
}
}
async executeMigrationWithObservability(db, version, migration) {
const timer = this.metrics.migrationDuration.startTimer({ version });
const session = this.client.startSession();
try {
this.logger.info(`Starting migration ${version}`);
await session.withTransaction(async () => {
await migration.up(db, session, (collection, count) => {
this.metrics.documentsProcessed.inc({
version,
collection
}, count);
});
});
timer({ status: 'success' });
this.logger.info(`Migration ${version} completed`);
} catch (error) {
this.metrics.migrationErrors.inc({
version,
error_type: error.name
});
timer({ status: 'failed' });
throw error;
} finally {
await session.endSession();
}
}
}
```
### 2. Change Data Capture with Debezium
```python
import asyncio
import json
from kafka import KafkaConsumer, KafkaProducer
from prometheus_client import Counter, Histogram, Gauge
from datetime import datetime
class CDCObservabilityManager:
def __init__(self, config):
self.config = config
self.metrics = self.setup_metrics()
def setup_metrics(self):
return {
'events_processed': Counter(
'cdc_events_processed_total',
'Total CDC events processed',
['source', 'table', 'operation']
),
'consumer_lag': Gauge(
'cdc_consumer_lag_messages',
'Consumer lag in messages',
['topic', 'partition']
),
'replication_lag': Gauge(
'cdc_replication_lag_seconds',
'Replication lag',
['source_table', 'target_table']
)
}
async def setup_cdc_pipeline(self):
self.consumer = KafkaConsumer(
'database.changes',
bootstrap_servers=self.config['kafka_brokers'],
group_id='migration-consumer',
value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)
self.producer = KafkaProducer(
bootstrap_servers=self.config['kafka_brokers'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)
async def process_cdc_events(self):
for message in self.consumer:
event = self.parse_cdc_event(message.value)
self.metrics['events_processed'].labels(
source=event.source_db,
table=event.table,
operation=event.operation
).inc()
await self.apply_to_target(
event.table,
event.operation,
event.data,
event.timestamp
)
async def setup_debezium_connector(self, source_config):
connector_config = {
"name": f"migration-connector-{source_config['name']}",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": source_config['host'],
"database.port": source_config['port'],
"database.dbname": source_config['database'],
"plugin.name": "pgoutput",
"heartbeat.interval.ms": "10000"
}
}
response = requests.post(
f"{self.config['kafka_connect_url']}/connectors",
json=connector_config
)
```
### 3. Enterprise Monitoring and Alerting
```python
from prometheus_client import Counter, Gauge, Histogram, Summary
import numpy as np
class EnterpriseMigrationMonitor:
def __init__(self, config):
self.config = config
self.registry = prometheus.CollectorRegistry()
self.metrics = self.setup_metrics()
self.alerting = AlertingSystem(config.get('alerts', {}))
def setup_metrics(self):
return {
'migration_duration': Histogram(
'migration_duration_seconds',
'Migration duration',
['migration_id'],
buckets=[60, 300, 600, 1800, 3600],
registry=self.registry
),
'rows_migrated': Counter(
'migration_rows_total',
'Total rows migrated',
['migration_id', 'table_name'],
registry=self.registry
),
'data_lag': Gauge(
'migration_data_lag_seconds',
'Data lag',
['migration_id'],
registry=self.registry
)
}
async def track_migration_progress(self, migration_id):
while migration.status == 'running':
stats = await self.calculate_progress_stats(migration)
self.metrics['rows_migrated'].labels(
migration_id=migration_id,
table_name=migration.table
).inc(stats.rows_processed)
anomalies = await self.detect_anomalies(migration_id, stats)
if anomalies:
await self.handle_anomalies(migration_id, anomalies)
await asyncio.sleep(30)
async def detect_anomalies(self, migration_id, stats):
anomalies = []
if stats.rows_per_second < stats.expected_rows_per_second * 0.5:
anomalies.append({
'type': 'low_throughput',
'severity': 'warning',
'message': f'Throughput below expected'
})
if stats.error_rate > 0.01:
anomalies.append({
'type': 'high_error_rate',
'severity': 'critical',
'message': f'Error rate exceeds threshold'
})
return anomalies
async def setup_migration_dashboard(self):
dashboard_config = {
"dashboard": {
"title": "Database Migration Monitoring",
"panels": [
{
"title": "Migration Progress",
"targets": [{
"expr": "rate(migration_rows_total[5m])"
}]
},
{
"title": "Data Lag",
"targets": [{
"expr": "migration_data_lag_seconds"
}]
}
]
}
}
response = requests.post(
f"{self.config['grafana_url']}/api/dashboards/db",
json=dashboard_config,
headers={'Authorization': f"Bearer {self.config['grafana_token']}"}
)
class AlertingSystem:
def __init__(self, config):
self.config = config
async def send_alert(self, title, message, severity, **kwargs):
if 'slack' in self.config:
await self.send_slack_alert(title, message, severity)
if 'email' in self.config:
await self.send_email_alert(title, message, severity)
async def send_slack_alert(self, title, message, severity):
color = {
'critical': 'danger',
'warning': 'warning',
'info': 'good'
}.get(severity, 'warning')
payload = {
'text': title,
'attachments': [{
'color': color,
'text': message
}]
}
requests.post(self.config['slack']['webhook_url'], json=payload)
```
### 4. Grafana Dashboard Configuration
```python
dashboard_panels = [
{
"id": 1,
"title": "Migration Progress",
"type": "graph",
"targets": [{
"expr": "rate(migration_rows_total[5m])",
"legendFormat": "{{migration_id}} - {{table_name}}"
}]
},
{
"id": 2,
"title": "Data Lag",
"type": "stat",
"targets": [{
"expr": "migration_data_lag_seconds"
}],
"fieldConfig": {
"thresholds": {
"steps": [
{"value": 0, "color": "green"},
{"value": 60, "color": "yellow"},
{"value": 300, "color": "red"}
]
}
}
},
{
"id": 3,
"title": "Error Rate",
"type": "graph",
"targets": [{
"expr": "rate(migration_errors_total[5m])"
}]
}
]
```
### 5. CI/CD Integration
```yaml
name: Migration Monitoring
on:
push:
branches: [main]
jobs:
monitor-migration:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Start Monitoring
run: |
python migration_monitor.py start \
--migration-id ${{ github.sha }} \
--prometheus-url ${{ secrets.PROMETHEUS_URL }}
- name: Run Migration
run: |
python migrate.py --environment production
- name: Check Migration Health
run: |
python migration_monitor.py check \
--migration-id ${{ github.sha }} \
--max-lag 300
```
## Output Format
1. **Observable MongoDB Migrations**: Atlas framework with metrics and validation
2. **CDC Pipeline with Monitoring**: Debezium integration with Kafka
3. **Enterprise Metrics Collection**: Prometheus instrumentation
4. **Anomaly Detection**: Statistical analysis
5. **Multi-channel Alerting**: Email, Slack, PagerDuty integrations
6. **Grafana Dashboard Automation**: Programmatic dashboard creation
7. **Replication Lag Tracking**: Source-to-target lag monitoring
8. **Health Check Systems**: Continuous pipeline monitoring
Focus on real-time visibility, proactive alerting, and comprehensive observability for zero-downtime migrations.
## Cross-Plugin Integration
This plugin integrates with:
- **sql-migrations**: Provides observability for SQL migrations
- **nosql-migrations**: Monitors NoSQL transformations
- **migration-integration**: Coordinates monitoring across workflows
💡 Suggested Test Inputs
Loading suggested inputs...
🎯 Community Test Results
Loading results...
📦 Package Info
- Format
- claude
- Type
- slash-command
- Category
- testing
- License
- MIT