@claude-code-commands/code-conda-setup-conda-rocm
Set up conda environment for ROCm and PyTorch
prpm install @claude-code-commands/code-conda-setup-conda-rocm2 total downloads
📄 Full Prompt Content
---
description: Set up conda environment for ROCm and PyTorch
tags: [python, conda, rocm, pytorch, ai, development, project, gitignored]
---
You are helping the user set up a conda environment optimized for ROCm and PyTorch.
## Process
1. **Check if conda is installed**
- Run: `conda --version`
- If not installed, suggest installing Miniconda or Anaconda
- Installation: `wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && bash Miniconda3-latest-Linux-x86_64.sh`
2. **Verify ROCm is available on system**
- Check: `rocminfo`
- Get ROCm version: `rocminfo | grep "Name:" | head -1`
- Typical ROCm versions: 5.7, 6.0, 6.1
3. **Create conda environment**
```bash
conda create -n rocm-pytorch python=3.11 -y
conda activate rocm-pytorch
```
4. **Install PyTorch with ROCm support**
- Check compatible PyTorch version at: pytorch.org/get-started/locally/
- Install based on ROCm version:
```bash
# For ROCm 6.0
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
# For ROCm 5.7
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.7
```
5. **Install essential ML libraries**
```bash
conda install -c conda-forge numpy scipy matplotlib jupyter ipython -y
pip install pandas scikit-learn
```
6. **Install deep learning tools**
```bash
pip install transformers accelerate datasets
pip install tensorboard
pip install onnx onnxruntime
```
7. **Test PyTorch ROCm integration**
```python
import torch
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}") # ROCm uses CUDA API
if torch.cuda.is_available():
print(f"Device name: {torch.cuda.get_device_name(0)}")
print(f"Device count: {torch.cuda.device_count()}")
```
8. **Create activation script**
- Offer to create `~/scripts/activate-rocm-pytorch.sh`:
```bash
#!/bin/bash
eval "$(conda shell.bash hook)"
conda activate rocm-pytorch
echo "ROCm PyTorch environment activated"
python -c "import torch; print(f'PyTorch: {torch.__version__}, CUDA available: {torch.cuda.is_available()}')"
```
9. **Optional: Install additional tools**
- Suggest:
- `timm` - PyTorch image models
- `torchmetrics` - Metrics
- `lightning` - PyTorch Lightning
- `einops` - Tensor operations
## Output
Provide a summary showing:
- Conda environment name and Python version
- PyTorch version and ROCm compatibility
- GPU detection status
- List of installed packages
- Test results showing GPU is accessible
- Activation command for future use
💡 Suggested Test Inputs
Loading suggested inputs...
🎯 Community Test Results
Loading results...
📦 Package Info
- Format
- claude
- Type
- slash-command
- Category
- general